\qquad
Part 1. Motion
I. Speed and Velocity:

1. Draw the "Speed Equation Triangle"
2. What is the difference between speed and velocity?
3. A model walks down a 45 meter runway at a fashion show and makes it to the end of the runway in 17 seconds. What is the velocity of the model?
4. A hockey player hits a hockey puck which flies 30 feet into a net with a speed of 48 feet/second. How much time did it take for the puck to score?
5. volleyball player hits a ball with a speed of 12 feet per second and the ball travels for 4.5 seconds. How far did the ball travel?

II Acceleration:

1. What is the equation for acceleration?
2. Clayton Kershaw hurls a pitch which starts in his hand at $0 \mathrm{~m} / \mathrm{s}$ and reaches the plate 1.2 seconds later at a rate of $30 \mathrm{~m} / \mathrm{s}$. What is the acceleration of the baseball?
3. Usain Bolt, the fastest man on earth, begins a race at the starting line. Then the gun goes off and he reaches his top speed of $24 \mathrm{~m} / \mathrm{s}$ in only 2.5 seconds. What is the acceleration of Usain Bolt?
4. A car is traveling down the road for 5 seconds at a constant rate of $26 \mathrm{~m} / \mathrm{s}$ then speeds up to $47 \mathrm{~m} / \mathrm{s}$ which takes 3 seconds. What is the acceleration of the car?

III Motion Graphs:

Describe the motion for each of the following graphs

5. Write a story for the following graph

Part 2: Forces

IV. Newton's Laws

1) Newton's first law is known as the "Law of \qquad " and states that Objects
in \qquad stay in \qquad , objects at \qquad stay
at \qquad unless acted upon by an \qquad
force.
2) Newton's second law states that \qquad is equal to multiplied by \qquad .
3) Newton's third law states that every \qquad force has an
and \qquad reaction \qquad .

V. Calculating Force

1) Draw the "Force Equation Triangle"
2) You are pushing a 32 kg shopping cart with an acceleration of $12 \mathrm{~m} / \mathrm{s}^{2}$ how much force are you pushing with?
3) While racing with an acceleration of $53 \mathrm{~m} / \mathrm{s}^{2}$ a $1,200 \mathrm{~kg}$ car crashes into a wall. With how much force does the car hit the wall?
4) A football player tackles another football player with a force of 560 N while running with an acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$ what is the mass of the football player?
5) What is the mass of a falling object hitting a surface with 15 N of force?

VI. Free Body Diagrams

1) Calculate the NET force for each diagram and include a direction arrow if appropriate.

2) Complete the Free Body Diagrams

A light bulb hangs from a wire in the kitchen carpet

A box is pushed to the left across a hockey rink
A box is pushed to the right across a

A ball is thrown straight up in the air as the wind blows it to the left

